Strong Lens Finding Simulations to train Neural Networks

Karina Rojas, Elodie Savary, Benjamin Clement, Frédéric Courbin EPFL, Switzerland

Strong lensing systems

Strong lensing systems

- ~ hundreds of lenses confirmed
- ~ thousand of lenses candidates

We need much more to train the Neural Network

Lens simulation in the literature

Fully Simulated

Simulated source + Real lens galaxy

Jacobs+2017

Real source galaxy

Lensed source

Real lens galaxy

Simulated Lens

Real source galaxy

Lensed source

Simulated Lens

Looking for lenses in CFIS & DES

- Canada-France Imaging Survey (CFIS):
 - The Canada-France-Hawaii Telescope (CFHT), Hawaii, USA.
 - MegaCam.
 - ~5000 square degrees.
 - **r-band** & u-band.
 - pixel size of 0.187"/pixel
- Dark Energy Survey (DES):
 - The Blanco Telescope, La Serena, Chile.
 - DeCam.
 - ~5000 square degrees.
 - **g, r, i,** z, Y bands.
 - pixel size of 0.265"/pixel

Credit: http://www.cfht.hawaii.edu/Science/CFIS/cfissurvey.html

Looking for lenses in CFIS & DES

24

+90

+60

+30

CFHT latitud (0000) +0

-30

-60

-90

360

Dec

B semester

21^H

18"

- Canada-France Imaging Survey (CFIS):
 - The Canada-France-Hawaii Telescope Ο (CFHT), Hawaii, USA.
 - MegaCam. Ο
 - ~5000 square degrees. Ο
 - r-band & u-band. 0
 - pixel size of 0.187"/pixel Ο
- Dark Energy Survey (DES):
 - The Blanco Telescope, La Serena, Chile. Ο
 - DeCam. Ο
 - ~5000 square degrees. Ο
 - **g**, **r**, **i**, z, Y bands. Ο
 - pixel size of 0.265"/pixel 0

We plan to look for lenses in HST F814W. See **Benjamin Clement** talk tomorrow!

Credit: http://www.cfht.hawaii.edu/Science/CFIS/cfissurvey.html

B semester

3^H

Galactic dust Ecliptic lat.l < 15deg

SDSS CFIS-LUAU 10k deg2

PS1 3P

Euclid Wide Dark Energy Survey

CFIS-WIQD 5k deg2

CEIS_WIOD/SDSS

LSST main survey

+90

+60

+30

CEHT Intitude

64

A semester (LST midnight)

12"

9^H

15^H

CFIS & DES lens selection

CFIS : 100000 LRG with SDSS spectra randomly selected to match redshift and velocity dispersion distributions in Oguri & Marshall 2010

DES DR1: 1.8 < (g - i) < 5.0 18 < r < 23 0.6 < (g - r) < 3 20 < g 18 < i

Similar to Jacobs+2019

DES DR1 galaxies

Velocity dispersion & Redshifts SDSS catalogue

K-Neighbors Regression

CFIS-r

DES-dr1

Real source galaxy

Lensed source

Real lens galaxy

Real source galaxies

HST+HSC combined images

galaxy

Lensed source

Minimum Einstein radio

select one randomly

Minimum Einstein radio select one randomly

LRG

Singular Isothermal Ellipsoid (SIE) lens model:

 $\Theta_{\rm E}, {\rm q}, \Theta_{\rm q}, {\rm x}_{\rm L}, {\rm y}_{\rm L}$

Real source galaxy

Lensed source

LRG

• The image is rescaled to final image pixel size.

 Then is Convolved with the LRG PSF image.

Real source galaxy

Lensed source

Simulated Lens

Simulations of lens systems for CFIS and DES

r-band simulations for CFIS

Simulation with Glee

gri simulations for DES

Simulation with Lenstronomy

Conclusions & Future Work

We are **successfully** simulating CFIS and DES galaxy-galaxy systems using **real data**.

TO DO LIST:

- 1. Increase the **source sample** at higher redshift and with a depth according to each survey.
- 2. Investigate the **best distribution** of Einstein radio to optimize the search.
- 3. Simulate thousands of lens systems and train the CNN.
- 4. Find a bunch of new lenses!

CNN Architecture

CFIS candidates

DES candidates

Conclusions & Future Work

We are **successfully** simulating CFIS and DES galaxy-galaxy systems using **real data**.

TO DO LIST:

- 1. Increase the **source sample** at higher redshift and with a depth according to each survey.
- 2. Investigate the **best distribution** of Einstein radio to optimize the search.
- 3. Simulate thousands of lens systems and train the CNN.
- 4. Find a bunch of new lenses!